Premininary Results:

Rain at the Ice Edge & AMSR-E in XCAL

Tom Wilheit
Texas A&M Univ.
Hendersonville, NC
wilheit@tamu.edu

Rain at the Ice Edge

Problem:

Viewed simply, Sea Ice and rain look similar. Can we tell them apart?

Temporal continuity is one approach Inconvenient.

Wouldn't expect polarization to be useful here. What about the spectral characteristics? We will look at it through the TAMU rain algorithm. with a few modifications for high latitude work.

AE VERSION 9
START TIME
2003/ 7/ 1
1: 9:56
END TIME

2003/ 7/ 1

1:26: 4

UL LAT 74.3S

UL LON 293.5E

LR LAT 37.1S

LR LON 179.2E

10V 168 304

19V 189 305

37V 206 299

Apparent Rain Rates (10 GHz Resolution)

Apparent Rain Rates (18 GHz Resolution(well almost))

Rain at Ice Edge

When Ice Substantially Fills the FOV, Rain Retrievals are Inconsistent.

Near the Ice Edge, Not So Much.

Need to Look at More Cases.

What is X-CAL?

OBJECTIVE

To make the GPM rain data set as clean and self-consistent as possible

CONTEXT: 3 Layer Process

Calibrate individual instruments as well as possible Instrument Manufacturers

Cross Calibrate instruments
Intercalibration (X-CAL) Working Group

Statistical Comparisons at Rain Retrieval Level Algorithm Teams

Develop techniques for comparing similar, but not identical, microwave radiometers

Develop implementation strategy for routine intercalibration of constellation radiometers

Develop Traps and corrections for recurring instrument errors.s.

X-CAL Status

TMI/Windsat Comparison in cleanup stage. Consensus Standard (Mark 1)

Starting to bring AMSR-E into X-CAL

Process

Prescreen Data:

Unphysical Data

Scan-wise Anomalies

Orbit-wise Anomalies

Compare Tbs

Matchup Data Set

Limiting Value Approaches

Generate adjustments to Consensus Standard

We are Starting Prescreening on Level 1X data from GSFC/JAXA Data became available about 2 weeks ago.

Windsat July 2005 Ocean only Horiz Axis 18V 170 to 280K Vert Axis 23V-18V -20 to 50K Colors # of Samples 1(blue) 1E6(purple)

TMI V6 July 2005
Ocean only
Horiz Axis 19V
170 to 280K
Vert Axis 21V-19V
-10 to 60K
Color = # of Samples
1(blue) 1E7(purple)

TMI JULY 2005
OCEAN ONLY
HORIZ AXIS 10H
60 TO 280K
VERT AXIS 10V
0 TO 100K
COLOR # OF SAMPLES
1(BLUE) 1E8(PURPLE)

AMSR-E 1X July 2005 Ocean only
Horiz Axis 19V
170 to 280K
Vert Axis 21V-19V
-10 to 60K
Color = # of Samples
1(blue) 1E7(purple)

AMSR-E 1X July 2005 Ocean only
Horiz Axis 6.9H
70 to 240K
Vert Axis 6.9V-6.9H
0 to 110K
Color = # of Samples
1(blue) 1E7(purple)

AMSR-E 1X July 2005
Ocean only
Horiz Axis 23H
100 to 280K
Vert Axis 23V-23H
-10 to 90K
Color = # of Samples
1(blue) 1E7(purple)

AMSR-E 1X July 2005 Ocean only
Horiz Axis 37H
100 to 280K
Vert Axis 37V-37H
-10 to 90K
Color = # of Samples
1(blue) 1E7(purple)

AMSR-E DATA

Lots of unphysical data at C-Band What a surprise!
Some at X-Band

Otherwise pretty clean.

Spare Slides

Windsat July 2005 Ocean only Horiz Axis 18V 170 to 280K Vert Axis 23V-18V -20 to 50K Colors # of Samples 1(blue) 1E6(purple)

Windsat 1C July 2005
Ocean only
Horiz Axis 10.7H
70 to 280K
Vert Axis 10.7V-10.7
10 to 90K
Color = # of Samples
1(blue) 1E7(purple)

AMSR-E 1X July 2005 Ocean only
Horiz Axis 23H
100 to 280K
Vert Axis 23V-23H
-10 to 90K
Color = # of Samples
1(blue) 1E7(purple)

Windsat 1C July 2005
Ocean only
Horiz Axis 37H
100 to 280K
Vert Axis 37V-37H
-10 to 90K
Color = # of Samples
1(blue) 1E7(purple)

Warm End (~280K) TMI Error Inferred from Windsat

